تحلیل‌های آماری و داده‌پردازی

مشاوره

آمار (به انگلیسی: statistics) به مجموعه‌ی داده‌های عددی مربوط به یک موضوع (معمولا مهم)، مانند جمعیت، متوفیات، میزان تجارت داخلی یا خارجی، دما یا بارش ماهیانه و غیر گفته می‌شود. آمار را باید علم و عمل استخراج، بسط، و توسعهٔ دانشهای تجربی انسانی با استفاده از روش‌های گردآوری، تنظیم، پرورش، و تحلیل دادههای تجربی (حاصل از اندازه گیری و آزمایش) دانست. زمینه‌های محاسباتی و رایانه‌ای جدیدتری همچون یادگیری ماشینی، وکاوش‌های ماشینی در داده‌ها، در واقع، امتداد و گسترش دانش گسترده و کهن از آمار به عهد محاسبات نو و دوران اعمال شیوه‌های ماشینی در همه‌جا می‌باشد. علم آمار، علم فن فراهم کردن داده‌های کمّی و تحلیل آن‌ها به منظور به دست آورن نتیایجی که اگرچه احتمالی است، اما در خور اعتماد است.

در صورتی که شاخه‌ای علمی مد نظر نباشد، معنای آن، داده‌هایی به‌شکل ارقام و اعداد واقعی یا تقریبی است که با استفاده از علم آمار می‌توان با آن‌ها رفتار کرد و عملیات ذکر شده در بالا را بر آن‌ها انجام داد. بیشتر مردم با کلمة آمار به مفهومی که برای ثبت و نمایش اطلاعات عددی به کار می‌رود آشنا هستند. ولی این مفهوم منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتاً با وضعیتهایی سر و کار دارد که در آنها وقوع یک پیشامد به طور حتمی قابل پیش بینی نیست. اسنتاجهای آماری غالباً غیر حتمی اند، زیرا مبتنی بر اطلاعات ناکاملی هستند. در طول چندین دهه آمار فقط با بیان اطلاعات و مقادیر عددی در باره اقتصاد، جمعیت‌شناسی و اوضاع سیاسی حاکم در یک کشور سر و کار داشت. حتی امروز بسیاری از نشریات و گزارشهای دولتی که توده‌ای از آمار و ارقام را در بردارند معنی اولیه کلمه آمار را در ذهن زنده می‌کنند. اکثر افراد معمولی هنوز این تصویر غلط را در باره آمار دارند که آن را منحصر به ستونهای عددی سرگیجه آور و گاهی یک سری شکلهای مبهوت کننده می‌دانند. بنابراین، یادآوری این نکته ضروری است که نظریه و روشهای جدید آماری از حد ساختن جدولهای اعداد و نمودارها بسیار فراتر رفته‌اند. آمار به عنوان یک موضوع علمی، امروزه شامل مفاهیم و روشهایی است که در تمام پژوهشهایی که مستلزم جمع آوری داده‌ها به وسیله یک فرایند آزمایش و مشاهده و انجام استنباط و نتیجه گیری به وسیله تجزیه و تحلیل این داده‌ها هستند اهمیت بسیار دارند.

علم‌آمار:

علم آمار، خود مبتنی است بر نظریه آمار که شاخه‌ای از ریاضیات کاربردی به حساب می‌آید. در نظریهٔ آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریهٔ احتمالات مدل‌سازی می‌شوند. در این علم، مطالعه و قضاوت معقول در بارهٔ موضوع‌های گوناگون، بر مبنای یک جمع انجام می‌شود و قضاوت در مورد یک فرد خاص، اصلاً مطرح نیست.

از جملهٔ مهم‌ترین اهداف آمار، می‌توان تولید «بهترین» اطّلاعات از دادههای موجود و سپس استخراج دانش از آن اطّلاعات را ذکر کرد. به همین سبب است که برخی از منابع، آمار را شاخه‌ای از نظریه تصمیم‌ها به شمار می‌آورند.

این علم به بخش‌های آمار توصیفی و آمار استنباطی تقسیم می‌شود. از طرف دیگر می‌توان آن را به دو بخش آمار کلاسیک و آمار بیز تقسیم بندی کرد. در آمار کلاسیک، که امروزه در دانشگاه‌ها و دبیرستان‌ها تدریس می‌گردد، ابتدا آزمایش و نتیجه را داریم و بعد بر اساس آن‌ها فرض‌ها را آزمون می‌کنیم. به عبارت دیگر ابتدا آزمایش انجام می‌شود و بعد فرض آزمون می‌گردد. در آمار بیزی ابتدا فرض در نظر گرفته می‌شود و داده‌ها با آن مطابقت داده می‌شوند به عبارت دیگر در آمار بیزی یک پیش توزیع داریم-توزیع پیشین- و بعد از مطالعه داده‌ها و برای رسیدن به آن توزیع پیشین، توزیع پسین را در نظر می‌گیریم.

روش‌های‌آماری:

مطالعات تجربی و مشاهداتی هدف کلی برای یک پروژه تحقیقی آماری، بررسی حوادث اتفاقی بوده و به ویژه نتیجه گیری روی تأثیر تغییرات در ارزش شاخص‌ها یا متغیرهای غیر وابسته روی یک پاسخ یا متغیر وابسته‌است. دو شیوه اصلی از مطالعات آماری تصادفی وجود دارد: مطالعات تجربی و مطالعات مشاهداتی. در هر دو نوع از این مطالعات، اثر تغییرات در یک متغیر (یا متغیرهای) غیر وابسته روی رفتار متغیرهای وابسته مشاهده می‌شود. اختلاف بین این دو شیوه درچگونگی مطالعه‌ای است که عملاً هدایت می‌شود. یک مطالعه تجربی در بردارنده روش‌های اندازه گیری سیستم تحت مطالعه‌است که سیستم را تغییر می‌دهد و سپس با استفاده از روش مشابه اندازه گیری‌های اضافی انجام می‌دهد تا مشخص سازد که آیا تغییرات انجام شده، مقادیر شاخص‌ها را تغییر می‌دهد یا خیر. در مقابل یک مطالعه نظری، مداخلات تجربی را در بر نمی‌گیرد. در عوضدادهها جمع آوری می‌شوند و روابط بین پیش بینی‌ها و جواب بررسی می‌شوند.

 احتمالات:

در زبان محاوره، احتمال یکی از چندین واژه‌ای است که برای دانسته یا پیشامدهای غیر مطمئن به کار می‌رود و کم و بیش با واژه‌هایی مانند ریسک، خطرناک، نامطمئن، مشکوک و بسته به متن قابل معاوضه‌است. شانس، بخت، امتیاز و شرط بندی از لغات دیگری است که نشان دهنده برداشت‌های مشابهی است. همانگونه که نظریه مکانیک به تعاریف دقیق ریاضی از عبارات متداولی مثل کار و نیرو می‌پردازد، نظریه احتمالات نیز تلاش دارد تا مفاهیم و برداشت‌های مربوط به احتمالات را کمّی سازی کند.

آمار پارامتریک و ناپارمتریک:

یکی دیگر از تقسیم بندی های رایج آمار ، تقسیم بندی آن به آمار پارامتریک و آمار ناپارامتریک است.

برای اینکه بیشتر با این معانی آشنا شویم ابتدا به بیان تفاوت آمار پارامتریک و ناپارامتریک می پردازیم:

به ساده ترین بیان باید گفت که برای سنجش فرضیه هایی که متغیر آن ها کمی است از آمار پارامتریک استفاده می شود. متغیر های کمی به علت کمی بودن و واحد پذیر بودن از این ویژگی برخورد دارند که آنها را میانگین پذیر و انحراف معیار پذیر می کنند و به دلیل همین ویژگی معمولا برای استفاده از آزمون های پارامتریک، پیش فرض هایی لازم است که از آن جمله نرمال بودن توزیع جامعه است زیرا در حالتی که توضیع جامعه نرمال نباشد، میانگین و انحراف معیار، نمایی واقعی از داده ها را به تصویر نمی کشانند.

به عنوان مثال فرض کنید، مدیری می خواهد میانگین موجودی حساب های قرض الحسنه یک بانک را محاسبه نماید. چنانچه از مجموع مشتریان بانک چند نفر وجود داشته باشند که موجودی های میلیونی داشته باشند، با این فرض میانگین کل به طور خودکار به سمت بالا میل خواهد کرد و از حالت عادی خود خارج می شود. این مسئله ساده خود را در نرمال بودن جامعه آشکار می کند. در چنین حالتی، چون مبنای تصمیم گیری عموما میانگین و سایر شاخصه های مرتبط با میانگین است با فرض انحراف از توزیع نرمال ، تصمیم گیری ها چهره ای منطقی و واقعی نخواهند داشت . بنابراین نرمال بودن توزیع جامعه یکی از اصلی ترین پیش فرض های استفاده از آمار پارامتریک است.

برای سنجش فرضیه ها با متغیر های کیفی، آمار ناپارامتریک استفاده می شود. این آزمون ها، که از آن ها با عنوان “آزمون های بدون پیش فرض ” نیز یاد می شود، به هیچ پیش فرض خاصی نیاز ندارد.

برای مثال قضاوت درباره جنیسیت افراد با میانگین و انحراف معیار مبتنی نیست، بلکه بیشتر فراوانی هر یک از ردههای آن (مونث / مذکر) مد نظر است.

در خصوص تبدیل متغیر ها باید یادآور شد که می توان که متغیر های کمی را به کیفی تبدیل نمود و آنها را با آزمون های ناپارامتریک مورد ارزیابی قرار داد، ولی عکس این عمل امکان پذیر نمی باشد

برای مثال ، معدل افراد بر اساس نمره می تواند در آزمون های پارامتریک ارزیابی شود، ولی با تبدیل همین متغیر به مقوله های خوب، متوسط و ضعیف می توان آزمون های نا پارامتریک را هم در مورد آن ها به کار گرفت.

شایان ذکر است که سطح دقت در آزمون های آماری پارامتریک از آزمون های آماری ناپارامتریک بیشتر است و معمولا پیشنهاد می شود که در صورتی که استفاده از آزمون های پارامتریک امکان پذیر باشد از آزمون های ناپارامتریک استفاده نشود، باید توجه داشت که بیشتر متغیر ها در علوم رفتار ی به کمک آزمون های نا پارامتریک مورد قضاوت قرار می گیرند.

خدمات آماری شرکت تسکو:

جهت درخواست هر یک از خدمات زیر فرم زیر را تکمیل و به آدرس ایمیل info@tassco.org ارسال فرمایید.

آزمون‌های پارامتریک:

  • آزمون مقایسه میانگین‌ها
  • آزمون تحلیل واریانس (ANOVA)
  • آزمون همبستگی (correlation test)
  • همبستگی جزئی (Partial correlation)

آزمون‌های ناپارامتریک

  • آزمون خی‌دو (Chi-square)
  • آزمون نرمال‌بودن داده‌ها
  • آزمون یومان ویتنی (Mann-whitney)
  • آزمون کروسکال والیس (Kruskal wallis)
  • آزمون‌های تعقیبی (Post Hoc)
  • آزمون ویلکاکسون (Wilcoxon)
  • آزمون فریدمن (Friedman Test)
  • آزمون دوجلمه‌ای (Binominal Test)
  • آزمون مک نمار (McNemar Test)
  • آزمون کوکران (Cochrans Test)
  • آزمون تصادفی بودن نمونه
  • آزمون علامت (Sign test)
  • آزمون همگونی (Test of Homogeneity)

 سایر خدمات آماری:

  • طراحی پرسش‌نامه
  • تحلیل با SPSS
  • ویرایش ساختار پایان‌نامه
  • تحلیل رگرسیون
  • تحلیل چند متغیره
  • تعین روایی و پایایی پرسشنامه
  • تعیین حجم نمونه برداری
  • پیش‌بینی
  • تحلیل‌های چند متغیره
  • تحلیل‌خوشه
  • داده‌کاوی و فرآیند کاوی
  • آموزش خصوصی تحلیل‌های آماری